合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 不同配方的水性氟丙樹脂涂料涂膜合成、性能指標(biāo)
> 復(fù)合表面活性劑表面性質(zhì)和泡沫性能的研究
> 基于界面張力和表面張力測試評估商用UV油墨對不同承印紙張的表面浸潤性差異(三)
> 油藏儲層油水界面張力是形成啟動壓力梯度的微觀成因
> 雙鏈乳糖酰胺季銨鹽表面活性劑物化性能、應(yīng)用性能及復(fù)配性能研究
> 液態(tài)表面張力儀表面結(jié)構(gòu)、工作原理及技術(shù)參數(shù)
> 脫模劑配方中加入石油磺酸鈉,可降低液體表面張力、減少界面形成
> 不同稠油下油相中芳烴含量、水相pH值對油-水界面張力變化規(guī)律
> 如何判斷表面張力儀的好壞?
> 石油磺酸鹽中有效組分的結(jié)構(gòu)與界面張力的關(guān)系
推薦新聞Info
-
> 全氟庚烷端基聚丙烯酸(FPAA)合成方法及水溶液表面張力測定
> 純聚苯胺LB膜和聚苯胺與乙酸混合的LB膜制備、NO?氣體敏感特性研究(下)
> 純聚苯胺LB膜和聚苯胺與乙酸混合的LB膜制備、NO?氣體敏感特性研究(上)
> 不同相對兩親面積的Janus顆粒在油氣表面性質(zhì)和泡沫性能對比(三)
> 不同相對兩親面積的Janus顆粒在油氣表面性質(zhì)和泡沫性能對比(二)
> 不同相對兩親面積的Janus顆粒在油氣表面性質(zhì)和泡沫性能對比(一)
> 氣凝膠的合成方法及干燥方法一覽
> 表面活性劑對?納米碳纖維CNFs在水性體系中分散性的影響(二)
> 表面活性劑對?納米碳纖維CNFs在水性體系中分散性的影響(一)
> 納米熔鹽形成機(jī)理、表面張力測定及影響因素研究(三)
連接基對3種表面活性劑GSS271、GSS371和GSS471動態(tài)表面性能的影響(下)
來源:印染助劑 瀏覽 875 次 發(fā)布時間:2024-12-04
2.2動態(tài)表面張力
Rosen等研究DST隨時間變化后給出以下經(jīng)驗方程:
其中,γ0為溶劑表面張力,γt為表面活性劑溶液t時刻表面張力,γm為介平衡表面張力。n與t*均為常數(shù)。
測得的DST數(shù)據(jù)經(jīng)公式(1)處理后,令lgK表示lg[(γ0-γt)/(γt-γm)],以lgK對lgt作圖,結(jié)果見圖4~5。從直線的斜率與截距可以得到DST的特性參數(shù)n與t*值,并可根據(jù)公式(2)~(4)進(jìn)一步得到誘導(dǎo)區(qū)結(jié)束時間ti、介平衡開始時間tm及t1/2時表面張力下降速率R1/2,結(jié)果見表2。
由表2可知,GSS271、GSS371、GSS471的n值基本相同,說明吸附初期(t→0)連接基長度對表面活性劑分子從本體溶液中擴(kuò)散到面下層的過程影響較小。GSS471的t*最大,反映吸附后期(t→∞)表面活性劑分子從面下層吸附到溶液表面的勢壘最小,這與GSS471柔性連接鏈易彎曲導(dǎo)致兩條疏水鏈間作用增強(qiáng),更易在表面定向排列有關(guān)。GSS271的ti最小,表明誘導(dǎo)區(qū)結(jié)束的時間最早,R1/2最大表明動態(tài)表面活性最好,這與其連接基最短且分子體積較小有關(guān)。
以GSS271為例,濃度越高,表面活性劑分子的擴(kuò)散推動力越大,于氣液界面吸附越快,DST下降越顯著,因而誘導(dǎo)區(qū)結(jié)束的時間越早,越易達(dá)到介平衡,這與γm、ti、tm較小吻合;t*值隨濃度增大而減小,表明吸附后期勢壘隨濃度增大而增大,因為濃度較高時,更多的GSS271分子吸附于表面,由于空間位阻、分子間靜電斥力的影響,阻礙了新的GSS271分子吸附,吸附勢壘變大。濃度高時,R1/2大,動態(tài)表面活性好。
在相同濃度下,連接基越短,動態(tài)表面活性越好,這與分子體積小、空間位阻小、擴(kuò)散阻力小有關(guān)。
2.3動態(tài)吸附模型
表面活性劑分子在新鮮表面上的吸附分兩步進(jìn)行:(1)分子從本體溶液到次表面的遷移;(2)分子在次表面和表面間的吸附平衡。在動態(tài)吸附模型的基礎(chǔ)上提出了兩種主要的動態(tài)吸附機(jī)理:擴(kuò)散控制吸附、混合動力控制吸附。
對c<cmc的表面活性劑溶液,Ward和Tordai根據(jù)擴(kuò)散控制機(jī)理提出了描述表面吸附動力學(xué)的模型:
式中,Γt為t時刻新鮮表面上表面活性劑的吸附量,c0為表面活性劑本體溶液濃度,D為表面活性劑分子擴(kuò)散系數(shù),cs為次表面層中表面活性劑濃度,τ為虛擬變量。其中前一部分表示分子從體相到面下層的遷移,后一部分表示隨著面下層濃度的增加,分子由面下層擴(kuò)散回體相。由于反擴(kuò)散項積分無法計算,對于離子型表面活性劑,Miller等用漸進(jìn)的方法對Ward-Tordai方程進(jìn)行了修正:
對于陰離子雙子表面活性劑,n=3,Гeq(平衡時表面吸附量)由平衡時的γ~c曲線經(jīng)計算機(jī)處理得到。對于混合動力控制吸附模型,Liggieri和Raveva引進(jìn)重整化擴(kuò)散系數(shù)D*,與由方程(7)得到的表觀擴(kuò)散系數(shù)D的關(guān)系為:
當(dāng)εa→0時,D*→D,混合動力控制過程趨近于擴(kuò)散控制過程。混合動力過程可看成是存在一定能壘的擴(kuò)散過程,修正后的方程為:
其中,Da=D*2/D=Dexp(-2εa/RT),當(dāng)吸附后期為擴(kuò)散控制吸附時,Da=D。
由式(8)和(9)可以看出:溶液的γt(t→0)與t1/2、γt(t→∞)與t-1/2呈線性關(guān)系。以γt分別對t1/2和t-1/2作圖,結(jié)果見圖6、7,直線的截距為對應(yīng)的平衡張力,分子擴(kuò)散系數(shù)可以由直線部分斜率求出,結(jié)果見表3。
從表3可知,吸附初期GSS的擴(kuò)散系數(shù)較吸附后期大2~3個數(shù)量級。表明GSS分子自本體溶液擴(kuò)散到次表面的速度遠(yuǎn)大于在氣液界面與次表面之間的交換速度,因為在吸附初期(t→0),新鮮表面不存在吸附勢壘,屬擴(kuò)散控制吸附;吸附后期(t→∞),在氣液界面吸附的GSS分子由于相互作用產(chǎn)生的位能壘、離子頭基間的靜電斥力以及分子的定位重排等共同作用導(dǎo)致了混合動力擴(kuò)散控制。
在吸附初期,GSS271的擴(kuò)散系數(shù)最大,表明較容易擴(kuò)散到次表面,這與在相同濃度下Rosen模型處理的n值最小吻合;在吸附后期,GSS471的擴(kuò)散系數(shù)最大,這與其柔性連接鏈扭曲變形而在表面定向排列緊密相關(guān),且與Rosen模型處理的t*值最大吻合。
表3 1 mmol/L系列GSS表面活性劑水溶液的表觀擴(kuò)散系數(shù)
3、結(jié)論
(1)GSS471的cmc、γcmc最小,這與其柔性連接鏈易扭曲變形密切相關(guān)。
(2)連接基越短,動態(tài)表面活性越好。當(dāng)表面活性劑濃度c>cmc時,動態(tài)表面活性高于c<cmc。
(3)當(dāng)表面活性劑濃度高時,誘導(dǎo)區(qū)結(jié)束時間早,易達(dá)到介平衡,吸附后期勢壘大。
(4)當(dāng)表面活性劑濃度c<cmc時,GSS表面活性劑在吸附初期為純擴(kuò)散控制,在吸附后期為混合動力擴(kuò)散控制。