合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 結(jié)合邏輯知識及力的三要素探討表面張力的客觀性
> 表面活性劑提高油田污水回注效率的機理研究
> 4種油醇烷氧基化物平衡和動態(tài)表面張力、潤濕性、泡沫性、乳化性質(zhì)研究(一)
> 燒結(jié)礦致密化行為研究:不同堿度條件下熔體的表面張力、表觀黏度值(二)
> DEAE-瓊脂糖LB膜的制備方法、最佳成膜濃度及表面電勢測定
> 氨基改性硅油柔軟劑的表面張力、透水率、分層測試(三)
> 基于脫模劑應用實現(xiàn)聚苯乙烯類生物材料改性
> 量化改進差分毛細管法測試高溫液態(tài)瀝青表面張力精度(下)
> 蘋果、葡萄、?茄子、絲瓜、大豆、棉花等植物葉片臨界表面張力值是多少
> 芬蘭Kibron表面張力測試儀跟蹤氯乙烯懸浮聚合中的表面張力變化情況
推薦新聞Info
-
> 燒結(jié)礦致密化行為研究:不同堿度條件下熔體的表面張力、表觀黏度值(三)
> 燒結(jié)礦致密化行為研究:不同堿度條件下熔體的表面張力、表觀黏度值(二)
> 燒結(jié)礦致密化行為研究:不同堿度條件下熔體的表面張力、表觀黏度值(一)
> 如何提高非離子表面活性劑的表面張力預測精度
> 不同水淹程度的油藏環(huán)境下微生物提高采收率、采出液的表面張力與界面張力的變化(二)
> 不同水淹程度的油藏環(huán)境下微生物提高采收率、采出液的表面張力與界面張力的變化(一)
> 新型助排劑配方組分、對表/界面性能的影響及助排效果(三)
> 新型助排劑配方組分、對表/界面性能的影響及助排效果(二)
> 新型助排劑配方組分、對表/界面性能的影響及助排效果(一)
> 電噴霧質(zhì)譜離子源技術(shù)優(yōu)化策略:降低外鞘液表面張力,加速液滴溶劑蒸發(fā)
含氟聚氨酯超疏水涂層表面性能、化學穩(wěn)定性、耐摩擦性能研究——結(jié)果與討論、結(jié)論
來源:聚氨酯工業(yè) 瀏覽 129 次 發(fā)布時間:2025-06-03
2結(jié)果與討論
2.1傅立葉紅外光譜表征
FPU的FT-IR分析結(jié)果如圖1所示。
圖1 FPU紅外特征圖譜
2.2 FPU薄膜的性能及熱性能
FPU薄膜的性能和熱分解溫度如表1所示。
表1 FPU薄膜的性能與熱分解溫度
由表1可見,含氟聚氨酯固化膜和玻璃基材之間的附著力達到0級,鉛筆硬度大于2H。FPU薄膜與水的靜態(tài)接觸角為106.4°,遠高于不含氟的聚氨酯膜。本研究的FPU薄膜在浸泡24 h后吸水率趨于平衡,泡水200 h后吸水率不高于1.79%,遠低于一般的聚氨酯的5%吸水率。歸因于C—F鏈段具有很低的表面張力,會自發(fā)地向表面遷移并富集,降低了表面張力,提高了材料的憎水性。除此之外,從表1中還可知FPU的T10和T50分別為237.8和329.2℃。與一般聚氨酯材料相比,F(xiàn)PU的熱穩(wěn)定性沒有很大程度的提升。
2.3超疏涂層的表面形貌分析
眾所周知,表面微結(jié)構(gòu)形貌在增強表面超疏性能方面起著重要作用。圖2是超疏涂層的SEM圖像,圖3是超疏涂層的AFM圖像。
圖2超疏涂層的SEM圖像
圖2a中能夠清楚地觀察到表面有1~2μm的凸起和200~300 nm的孔隙。圖2b是局部放大圖,明顯看出在涂層表面具有納米級的凹凸結(jié)構(gòu),且涂層表面分布有大量不均勻的粗糙孔結(jié)構(gòu)。許多小孔分布在這些凸起之間,小凸起與小孔共同形成珊瑚狀結(jié)構(gòu),導致更多的空氣被捕獲到這些孔隙中。
圖3超疏涂層的AFM圖像
圖3a能夠看出,涂層表面有560 nm左右的大的凸起和590 nm左右的凹陷,粗糙表面呈現(xiàn)出許多微尺度起伏,并且在圖3b中的局部放大部分顯示在大凸起上有許多很細小的納米凸起結(jié)構(gòu),這些大的凸起是由直徑1.3μm和約300 nm的SiO2共同構(gòu)成,細小的凸起是直徑60 nm的SiO2堆疊而成。這種微納米凹凸結(jié)構(gòu)對材料超疏性能做出貢獻。XPS測試得知表面氟質(zhì)量分數(shù)為23.54%,高于理論19.8%的氟含量。說明FPU中的CF2和CF3基團已經(jīng)遷移到薄膜表面并在表面富集。綜上所述,超疏涂層不僅具有優(yōu)異的表面微結(jié)構(gòu)還具有極低的表面張力。
2.4超疏涂層的表面性能
為了檢測涂層的表面性能,分別測試了5種液體在其表面的靜態(tài)接觸角和滾動角,結(jié)果見表2。
表2不同表面張力液體在超疏涂層上的接觸角和滾動角
由表2可見,超疏涂層對于表面張力在48.4~72.4 mN/m的液體具有超疏能力。分析其原因,一方面是由于FPU中含有大量低表面能的C—F鍵,在形成納米復合材料膜期間,含氟鏈段優(yōu)先遷移到薄膜表面,從而使其表面張力降低;另一方面在于使用低固含量的FPU溶液涂覆,最大程度保留了玻璃片表面微納米結(jié)構(gòu)的凹凸結(jié)構(gòu)特征。
2.5超疏涂層的化學穩(wěn)定性
在實際應用中,超疏涂層將會不可避免地面臨嚴苛環(huán)境的考驗,為此模擬測試了超疏涂層在不同溶液和溶劑中的化學穩(wěn)定性,結(jié)果如圖4所示。
圖4超疏涂層在不同溶液中水的接觸角和滾動角
由圖4可知,超疏涂層在無水乙醇和二氯甲烷中浸泡168 h后仍然保持超疏水性能;在pH=1的酸性溶液和質(zhì)量分數(shù)3.5%的NaCl溶液中浸泡120 h后與水仍然保持超疏性能。但在pH=14的堿性溶液中浸泡48 h后接觸角低于150°且已無法滾動。這說明涂層具有較好的耐酸、耐鹽水和耐溶劑性能,但是耐堿性欠佳。
2.6超疏涂層的耐磨性能
圖5為超疏涂層在經(jīng)過19次磨損的每次磨損周期后對水的接觸角和滾動角變化情況。
圖5涂層在19次磨損周期對水接觸角和滾動角變化
由圖5可見,超疏涂層在經(jīng)歷了19個回合后表面出現(xiàn)破損,但是涂層與水的靜態(tài)接觸角大于150°且滾動角小于10°,表明依舊具有超疏水性能。由此可見,雖然FPU薄膜只有2~3μm左右的厚度,但是仍然極大地提高了涂層的機械穩(wěn)定性。原因在于表面涂覆的FPU薄膜是特殊的軟硬兩相結(jié)構(gòu),同時氫鍵化程度高,最大限度地吸收來自外部摩擦的沖擊能,因而具有優(yōu)良的耐磨性。
3結(jié)論
(1)FPU薄膜具有較好的硬度、基材附著力、熱穩(wěn)定性和憎水性;通過SEM和AFM圖片證實了超疏水涂層具有良好的微納米凹凸結(jié)構(gòu);通過XPS測試可知涂層表面具有極低的表面張力。
(2)超疏水涂層對于表面張力在48.4~72.4 mN/m的液體具有超疏能力;具有優(yōu)良的耐磨性以及較好的耐酸、耐鹽水和耐溶劑性能,但耐堿性欠佳。