合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 表面張力的意義,醇類在不同溫度下的表面張力測(cè)定數(shù)據(jù)
> 基于表面張力測(cè)試研究Gemini季銨鹽在氟磷灰石與石英界面的吸附行為
> 糖基陽(yáng)離子型雙子表面活性劑復(fù)配酸化壓裂用助排劑,可降低表面張力、快速返排
> 基于界面張力弛豫法探討疏水改性聚合物與石油酸和瀝青質(zhì)間的相互作用(二)
> 烷基糖苷檸檬酸單酯二鈉鹽水溶液的動(dòng)態(tài)表面張力測(cè)定及影響因素(上)
> 探索界面張力梯度驅(qū)動(dòng)對(duì)流轉(zhuǎn)捩規(guī)律
> 不同種類與濃度的無(wú)機(jī)鹽氯化物對(duì)麥胚脂肪酶油-水界面特性的影響(一)
> 下雨天開(kāi)車雨水影響視線,肥皂涂層破壞水的表面張力
> 單片機(jī)智能控制的液體表面張力測(cè)量?jī)x設(shè)計(jì)
> 馬來(lái)酰蓖麻油酸聚乙二醇酯的表面張力、等物化性能測(cè)定(二)
推薦新聞Info
-
> 全氟庚烷端基聚丙烯酸(FPAA)合成方法及水溶液表面張力測(cè)定
> 純聚苯胺LB膜和聚苯胺與乙酸混合的LB膜制備、NO?氣體敏感特性研究(下)
> 純聚苯胺LB膜和聚苯胺與乙酸混合的LB膜制備、NO?氣體敏感特性研究(上)
> 不同相對(duì)兩親面積的Janus顆粒在油氣表面性質(zhì)和泡沫性能對(duì)比(三)
> 不同相對(duì)兩親面積的Janus顆粒在油氣表面性質(zhì)和泡沫性能對(duì)比(二)
> 不同相對(duì)兩親面積的Janus顆粒在油氣表面性質(zhì)和泡沫性能對(duì)比(一)
> 氣凝膠的合成方法及干燥方法一覽
> 表面活性劑對(duì)?納米碳纖維CNFs在水性體系中分散性的影響(二)
> 表面活性劑對(duì)?納米碳纖維CNFs在水性體系中分散性的影響(一)
> 納米熔鹽形成機(jī)理、表面張力測(cè)定及影響因素研究(三)
內(nèi)分泌物在膠束中的增溶作用——結(jié)論、致謝!
來(lái)源:Kibron 瀏覽 1779 次 發(fā)布時(shí)間:2021-09-22
結(jié)論
我們通過(guò)界面張力、熒光各向異性、動(dòng)態(tài)光散射和循環(huán)伏安法在 hp-β-CD 存在下研究了 EDCs(如 NP 和 β-E2)與 HTA+ 膠束和 HTA+ 單層在電極表面形成的相互作用。 Hp-β-CD 可用于使用水中溶解度較低的化學(xué)物質(zhì)(如這些 EDC)的實(shí)驗(yàn)。 EDCs 在膠束中的溶解增加了膠束表面的剛度和流體動(dòng)力學(xué)半徑,但不會(huì)改變膠束中的極性環(huán)境。 在低 HTA+ 濃度下,HTA+ 可防止 I2 吸附在電極表面。 在電極表面形成的 HTA+ 單分子層吸附其中的 I2。 然而,在 HTA+ 膠束的存在下,I2 溶解在膠束中。 I2/I? 的循環(huán)伏安法是研究表面活性劑在固溶體界面吸附條件的非常有用的工具。 NP 與 HTA+ 具有更相似的結(jié)構(gòu),更有效地降低了 cmc。
致謝
我們感謝 H. Tsukube 教授和 T. Nagasaki 教授(日本大阪城市大學(xué))在穩(wěn)態(tài)熒光、熒光各向異性和動(dòng)態(tài)光散射測(cè)量方面提供的幫助。 PS 感謝 R. Tanaka 博士(日本大阪市立大學(xué))以及日本科學(xué)促進(jìn)會(huì) (JSPS) 的博士后獎(jiǎng)學(xué)金。
參考
References 1. Davis DL, Bradlow HL, Wolff M, Woodruff T, Hoel DG, Anton- Culver H (1993) Environ Health Perspect 101:372
2. Colborn T, vom Saal FS, Soto AM (1993) Environ Health Perspect 101:378
3. Colborn T (1995) Environ Health Perspect 103(Suppl 7):135
4. Harrison PTC, Holmes P, Humfrey CDN (1997) Sci Total Environ 205:97
5. Kuramitz H, Natsui J, Sugawara K, Itoh S, Tanaka S (2002) Anal Chem 74:533
6. Kosaka O, Sehgal P, Doe H (2005) J Surfactants Deterg 8:347
7. Kosaka O, Sehgal P, Doe H (2008) Food Hydrocoll 22:144 DOI 10.1016/j.foodhyd.2007.01.024
8. Brix R, Hvidt S, Carlsen L (2001) Chemosphere 44:759
9. Song W, Li A, Xu X (2003) Ind Eng Chem 42:949
10. Maiti NC, Krishna MMG, Britto PJ, Periasamy N (1997) J Phys Chem B 101:11051
11. Otzen DE, Oliveberg M (2001) J Mol Biol 313:479
12. Menger FM, Galloway AL, Chlebowski ME (2005) Langmuir 21:9010
13. Hassan PA, Yakhmi JV (2000) Langmuir 16:7187
14. Chiang H, Lukton A (1975) J Phys Chem 79:1935
15. Tamura K, Nii N (1989) J Phys Chem 93:4825
16. Delacruz JL, Blanchard GJ (2003) J Phys Chem B 107:7102
17. Marchetti S, Onori G (2005) J Phys Chem B 109:3676
18. Wang Y, Mendoza S, Kaifer AE (1998) Inorg Chem 37:317
19. Osteryoung RA, Anson FC (1964) Anal Chem 36:975